Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631877

ABSTRACT

Recent studies suggest that the association of antigens in microparticles increases the anti-Leishmania vaccine immunogenicity. This study aims to investigate the in situ effect of the adjuvant performance consisting of chitosan-coated poly(D,L-lactic) acid submicrometric particles (SMP) and analyze the inflammatory profile and toxicity. Two formulations were selected, SMP1, containing poly(D,L-lactide) (PLA) 1% wt/v and chitosan 1% wt/v; and SMP2, containing PLA 5% wt/v and chitosan 5% wt/v. After a single dose of the unloaded SMP1 or SMP2 in mice, the SMPs promoted cell recruitment without tissue damage. In addition, besides the myeloperoxidase (MPO) activity having demonstrated similar results among the analyzed groups, a progressive reduction in the levels of N-acetyl-ß-D-glucosaminidase (NAG) until 72 h was observed for SMPs. While IL-6 levels were similar among all the analyzed groups along the kinetics, only the SMPs groups had detectable levels of TNF-α. Additionally, the Leishmania braziliensis antigen was encapsulated in SMPs (SMP1Ag and SMP2Ag), and mice were vaccinated with three doses. The immunogenicity analysis by flow cytometry demonstrated a reduction in NK (CD3-CD49+) cells in all the SMPs groups, in addition to impairment in the T cells subsets (CD3+CD4+) and CD3+CD8+) and B cells (CD19+) of the SMP2 group. The resulting data demonstrate that the chitosan-coated SMP formulations stimulate the early events of an innate immune response, suggesting their ability to increase the immunogenicity of co-administered Leishmania antigens.

2.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36679956

ABSTRACT

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

3.
Vaccines (Basel) ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36366357

ABSTRACT

Leishmaniasis is a widespread vector-borne disease in Brazil, with Leishmania (Leishmania) infantum as the primary etiological agent of visceral leishmaniasis (VL). Dogs are considered the main reservoir of this parasite, whose treatment in Brazil is restricted to the use of veterinary medicines, which do not promote a parasitological cure. Therefore, efficient vaccine development is the best approach to Canine Visceral Leishmaniasis (CVL) control. With this in mind, this study used hamsters (Mesocricetus auratus) as an experimental model in an anti-Leishmania preclinical vaccine trial to evaluate the safety, antigenicity, humoral response, and effects on tissue parasite load. Two novel formulations of nanoparticles made from poly(D, L-lactic) acid (PLA) polymer loading Leishmania braziliensis crude antigen (LB) exhibiting two different particle sizes were utilized: LBPSmG (570 nm) and LBPSmP (388 nm). The results showed that the nanoparticles were safe and harmless to hamsters and were antigenic with the induction in LBSap, LBPSmG, and LBPSmG groups of total anti-Leishmania IgG antibodies 30 days after challenge, which persists 200 days in LBSap and LBPSmP. At the same time, a less pronounced hepatosplenomegaly in LBSap, LBPSmG, and LBPSmP was found when compared to control groups, as well as a less pronounced inflammatory infiltrate and granuloma formation in the spleen. Furthermore, significant reductions of 84%, 81%, and 90% were observed in spleen parasite burden accessed by qPCR in the LBSap, LBPSmG, and LBPSmP groups, respectively. In this way, LBSap, LBPSmG, and LBPSmP formulations showed better results in vaccinated and L. infantum-challenged animals in further reducing parasitic load in the spleen and attenuating lesions in liver and splenic tissues. This results in safe, harmless nanoformulation vaccines with significant immunogenic and infection control potential. In addition, animals vaccinated with LBPSmP had an overall reduction in parasite burden in the spleen, indicating that a smaller nanoparticle could be more efficient in targeting antigen-presenting cells.

4.
Vet Dermatol ; 33(2): 142-e40, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34747068

ABSTRACT

BACKGROUND: Canine atopic dermatitis (cAD) is a chronic disease characterised by hypersensitivity to environmental allergens. Oclacitinib maleate selectively inhibits pro-inflammatory mediators associated with cAD. However, the impact of chronic oclacitinib use on immunocompetence requires further investigation. OBJECTIVES: Herein, we examined the potential immunomodulatory effects of prolonged oclacitinib treatment in dogs. ANIMALS: Thirteen privately owned dogs with cAD, treated with 0.4-0.6 mg/kg oclacitinib for 12 months. METHODS AND MATERIALS: Pruritus level was evaluated using a pruritus Visual Analog Scale (pVAS) and the canine atopic dermatitis extent and severity index, 4th iteration (CADESI IV). Peripheral blood samples were collected for routine laboratory assays and lymphocyte subtypes were analysed using flow cytometry. Antigen-specific intracellular cytokine production from CD4+ and CD8+ T lymphocytes was analysed following in vitro stimulation by Dermatophagoides farinae antigens. RESULTS: Oclacitinib treatment significantly reduced pVAS and CADESI-04 scores, by 51% and 86.7%, respectively. Flow cytometric analysis revealed increased CD4+ and CD14+ lymphocyte populations. The cytokine profile at 360 days after treatment initiation was similar to that before treatment and was not associated with clinical relapse. CONCLUSION: Oclacitinib, when administered at the currently labelled dose for one year, is associated with a significant increase in circulating CD4+ T cells, but does not alter cytokine production from antigen-stimulated T cells. The results reported do not support evidence for immunosuppression mediated by the mechanisms evaluated in this study.


Subject(s)
Dermatitis, Atopic , Dermatologic Agents , Dog Diseases , Animals , Dermatitis, Atopic/complications , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/veterinary , Dermatologic Agents/therapeutic use , Dog Diseases/drug therapy , Dogs , Maleates/therapeutic use , Pyrimidines , Sulfonamides
6.
Front Bioeng Biotechnol ; 8: 538203, 2020.
Article in English | MEDLINE | ID: mdl-33344427

ABSTRACT

The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.

7.
Front Med (Lausanne) ; 7: 275, 2020.
Article in English | MEDLINE | ID: mdl-32656216

ABSTRACT

Continuous climate changes associated with the disorderly occupation of urban areas have exposed Latin American populations to the emergence and reemergence of arboviruses transmitted by Aedes aegypti. The magnitude of the financial and political problems these epidemics may bring to the future of developing countries is still ignored. Due to the lack of effective antiviral drugs and vaccines against arboviruses, the primary measure for preventing or reducing the transmission of diseases depends entirely on the control of vectors or the interruption of human-vector contact. In Brazil the first attempt to control A. aegypti took place in 1902 by eliminating artificial sites of eproduction. Other strategies, such as the use of oviposition traps and chemical control with dichlorodiphenyltrichlorethane and pyrethroids, were successful, but only for a limited time. More recently, biotechnical approaches, such as the release of transgenics or sterile mosquitoes and the, development of transmission blocking vaccines, are being applied to try to control the A. aegypti population and/or arbovirus transmission. Endemic countries spend about twice as much to treat patients as they do on the prevention of mosquito-transmitted diseases. The result of this strategy is an explosive outbreak of arboviruses cases. This review summarizes the social impacts caused by A. aegypti-transmitted diseases, mainly from a biotechnological perspective in vector control aimed at protecting Latin American populations against arboviruses.

8.
Vet Parasitol ; 271: 87-97, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31303211

ABSTRACT

The natural history of canine visceral leishmaniasis (CVL) has been well described, particularly with respect to the parasite load in different tissues and immunopathological changes according to the progression of clinical forms. The biomarkers evaluated in these studies provide support for the improvement of the tools used in developing vaccines against CVL. Thus, we describe the major studies using the dog model that supplies the rationale for including different biomarkers (tissue parasitism, histopathology, hematological changes, leucocytes immunophenotyping, cytokines patterns, and in vitroco-culture systems using purified T-cells subsets and macrophages infected with L. infantum) for immunogenicity and protection evaluations in phases I and II applied to pre-clinical and clinical vaccine trials against CVL. The search for biomarkers related to resistance or susceptibility has revealed a mixed cytokine profile with a prominent proinflammatory immune response as relevant for Leishmania replication at low levels as observed in asymptomatic dogs (highlighted by high levels of IFN-γ and TNF-α and decreased levels in IL-4, TGF-ß and IL-10). Furthermore, increased levels in CD4+ and CD8+ T-cell subsets, presenting intracytoplasmic proinflammatory cytokine balance, have been associated with a resistance profile against CVL. In contrast, a polyclonal B-cell expansion towards plasma cell differentiation contributes to high antibody production, which is the hallmark of symptomatic dogs associated with high susceptibility in CVL. Finally, the different studies used to analyze biomarkers have been incorporated into vaccine immunogenicity and protection evaluations. Those biomarkers identified as resistance or susceptibility markers in CVL have been used to evaluate the vaccine performance against L. infantum in a kennel trial conducted before the field trial in an area known to be endemic for visceral leishmaniasis. This rationale has been a guiding force in the testing and selection of the best vaccine candidates against CVL and provides a way for the veterinary industry to register commercial immunobiological products.


Subject(s)
Biomarkers/blood , Dog Diseases/blood , Leishmaniasis, Visceral/veterinary , Animals , Biomarkers/analysis , Disease Susceptibility/metabolism , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Protozoan Vaccines/immunology
9.
Article in English | MEDLINE | ID: mdl-31921703

ABSTRACT

Visceral leishmaniasis (VL), caused by digenetic protozoa of the genus Leishmania, is the most severe form of leishmaniasis. Leishmania infantum is one of the species responsible for VL and the disease caused is considered a zoonosis whose main reservoir is the dog. Canine visceral leishmaniasis (CVL) can lead to the death of the animal if left untreated. Furthermore, the available pharmocologial treatment for CVL presents numerous disadvantages, such as relapses, toxicity, drug resistance, and the fact treated animals continue to be reservoirs when treatment fails to achieve parasitological cure. Moreover, the available VL control methods have not been adequate when it comes to controlling parasite transmission. Advances in immune response knowledge in recent years have led to a better understanding of VL pathogenesis, allowing new treatments to be developed based on immune system activation, often referred to as immunotherapy. In fact, well-defined protocols have been described, ranging from the use of immunomodulators to the use of vaccines. This treatment, which can also be associated with chemotherapy, has been shown to be effective in restoring or inducing an adequate immune response to reduce parasitic burden, leading to clinical improvement. This review focuses on immunotherapy directed at dogs infected by L. infantum, including a literature review of what has already been done in dogs. We also introduce a promising strategy to improve the efficacy of immunotherapy.


Subject(s)
Antigens, Protozoan/therapeutic use , Dog Diseases/therapy , Immunotherapy/methods , Leishmaniasis, Visceral/therapy , Leishmaniasis, Visceral/veterinary , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/immunology , Biomarkers , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Humans , Immunologic Factors/therapeutic use , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Protozoan Vaccines/therapeutic use , Treatment Outcome
10.
Vet Immunol Immunopathol ; 205: 58-64, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30459002

ABSTRACT

Canine atopic dermatitis (CAD) is a chronic, pruritic, genetic, and inflammatory disease. Its pathogenesis is very complex and involves skin barrier defects and immune system dysfunction. This study aimed to investigate hematological, biochemical, clinical, and immunological parameters to contribute to the identification of biomarkers applied to CAD. The results of the analysis on hematologic and clinical parameters showed increased neutrophil numbers and decreased lymphocyte counts. The ex vivo immunophenotyping of leukocytes demonstrated increased counts of circulating neutrophils, in addition to a high frequency of CD4+ T-cells and elevated CD4+/CD8+ T-cell ratio, which were the hallmark of atopic animals. Moreover, atopic dogs presented a mixed immune response, displaying both CD4+ and CD8+ T-cell subsets as relevant sources of IFN-γ and IL-4 cytokines. The morbidity analyzed by the CADESI index demonstrated that CAD severity is related to the low frequency of circulating CD14+ monocytes, CD21+ B-cells, and CD8+ T-cells. The reported biomarkers would be useful in CAD monitoring for treatment and prognosis analysis.


Subject(s)
Dermatitis, Atopic/immunology , Dermatitis, Atopic/veterinary , Dog Diseases/diagnosis , Dog Diseases/immunology , Animals , Biomarkers/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines , Dermatitis, Atopic/diagnosis , Dogs , Female , Flow Cytometry , Immunophenotyping , Interferon-gamma/immunology , Interleukin-4/immunology , Lymphocyte Subsets , Male , Monocytes/immunology , Severity of Illness Index , Skin/immunology , Skin/pathology , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...